
doi: 10.3934/math.2025091
In this study, we presented the conformable Laplace transform iterative method to find the approximate solution of the systems of nonlinear temporal-fractional differential equations in the sense of the conformable derivative. The advantage of the suggested approach was to compute the solution without discretization and restrictive assumptions. Three distinct examples were provided to show the applicability and efficacy of the proposed approach. To examine the exact and approximate solutions, we utilized the 2D and 3D graphics. Furthermore, the outcomes produced in this study were consistent with the exact solutions; hence, this strategy efficiently and effectively determined exact and approximate solutions to nonlinear temporal-fractional differential equations.
iterative method, QA1-939, conformable laplace transform, conformable derivative, temporal-fractional differential equations, numerical experiments, Mathematics
iterative method, QA1-939, conformable laplace transform, conformable derivative, temporal-fractional differential equations, numerical experiments, Mathematics
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
