
handle: 11336/272628 , 11585/1010697
1H NMR fingerprinting of virgin olive oils (VOOs) and a collection of binary classificationmodels arranged in a decision tree are presented as a stepwise strategy to determine thegeographical origin of a VOO at four levels, i.e. provenance from an EU member state oroutside the EU, country and region of origin, and compliance with a geographicalindication scheme. This approach supports current EU regulation that makes labelling ofthe geographical origin mandatory for olive oil. Currently, official methods for its controlare still lacking. Partial least squares discriminant analysis (PLS-DA) and random forestfor classification afforded robust and stable binary classification models to verify thegeographical origin of VOOs; however, the former outperformed the latter in terms ofaccuracy and robustness. The prediction abilities of the best binary PLS-DA model foreach case study were between 80% and 100% for both classes in cross-validation and inexternal validation. The satisfactory results achieved for the verification of thegeographical origin of VOOs, together with those of our previous studies on thediscrimination of olive oil categories, the detection of olive oils blended with vegetableoils (Alonso-Salces et al., 2022), and the determination of the stability, freshness, storagetime and conditions, and olive oil best−before date (Alonso-Salces et al., 2021), confirmthat a single H NMR analysis of an olive oil sample can provide useful information tocontrol several EU regulations related to olive oil marketing standards (Regulation (EU)2022/2104 and Regulation (EU) 2024/1143).
Fil: Alonso Salces, Rosa Maria. Universidad Nacional del Centro de la Provincia de Buenos Aires. Facultad de Ciencias Sociales. Departamento de Arqueología. Laboratorio de Ecología Evolutiva Humana (Sede Quequén); Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil; Argentina
Fil: Viacava, Gabriela Elena. Universidad Nacional de Mar del Plata. Facultad de Ingeniería. Departamento de Ingeniería Química. Grupo de Investigación en Ingeniería en Alimentos; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata; Argentina
Fil: Berrueta, Luis Ángel. Universidad del País Vasco; España
Fil: Héberger, Károly. Hungarian Academy Of Sciences; Hungría
Fil: Gallina Toschi, Tullia. Università di Bologna; Italia
Fil: Bendini, Alessandra. Università di Bologna; Italia
Fil: Vichi, Stefania. Universidad de Barcelona; España
Fil: Gallo, Blanca. Universidad del País Vasco; España
Fil: Tres, Alba. Universidad de Barcelona; España
PROTON NUCLEAR MAGNETIC RESONANCE, 330, GEOGRAPHICAL ORIGIN, TX642-TX840 Food sciences / élelmiszertudomány, Chemometrics; Decision tree; Geographical origin; Multivariate data analysis; Olive oil; Proton nuclear magnetic resonance, https://purl.org/becyt/ford/1.4, DECISION TREE, MULTIVARIATE DATA ANALYSIS, OLIVE OIL, https://purl.org/becyt/ford/1, CHEMOMETRICS
PROTON NUCLEAR MAGNETIC RESONANCE, 330, GEOGRAPHICAL ORIGIN, TX642-TX840 Food sciences / élelmiszertudomány, Chemometrics; Decision tree; Geographical origin; Multivariate data analysis; Olive oil; Proton nuclear magnetic resonance, https://purl.org/becyt/ford/1.4, DECISION TREE, MULTIVARIATE DATA ANALYSIS, OLIVE OIL, https://purl.org/becyt/ford/1, CHEMOMETRICS
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 2 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
