
In this paper, the experimental investigation focuses on the magnetoresistive properties of nanosized film systems. Their structure changes from layered to granular due to transition from bilayer FM/NM (FM is a ferromagnetic material, NM is a nonmagnetic material) to [FM/NM]n multilayer film at a constant total thickness of samples. As ferromagnetic and nonmagnetic materials were chosen permalloy Ni80Fe20 (Py) and Ag, respectively. It was demonstrated that the shape of the field dependences of magnetoresistance depends on the number of bilayer Py/Ag. For as-deposited [Py/Ag]n/S at n = 8, 16, the transition from the antiferromagnetic ordering of magnetic moments to ferromagnetic one occurs under an external magnetic field. As a result, the resistivity of the samples reduced, and the giant magnetoresistive effect was realized. The increase of the number of bilayers repeats from 2 to 16 at the unchanged total thickness of the system leads to the growth of the magnetoresistance from 0.1 % to 0.35 %. During annealing up to 600 K, the magnetoresistive effect is reduced, but it does not disappear completely
thermal annealing, багатошарова плівкова система, пошарова конденсація, відпалювання, Physics, QC1-999, layer-by-layer condensation, магніторезистивні властивості, multilayer film systems, magnetoresistive properties
thermal annealing, багатошарова плівкова система, пошарова конденсація, відпалювання, Physics, QC1-999, layer-by-layer condensation, магніторезистивні властивості, multilayer film systems, magnetoresistive properties
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
