Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Neuroradiologyarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Neuroradiology
Article . 2024 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
PubMed Central
Other literature type . 2024
License: CC BY
Data sources: PubMed Central
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Neuroradiology
Article . 2024
versions View all 5 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Automated assessment of brain MRIs in multiple sclerosis patients significantly reduces reading time

Authors: Victoria Sieber; Thilo Rusche; Shan Yang; Bram Stieltjes; Urs Fischer; Stefano Trebeschi; Philippe Cattin; +4 Authors

Automated assessment of brain MRIs in multiple sclerosis patients significantly reduces reading time

Abstract

Abstract Introduction Assessment of multiple sclerosis (MS) lesions on magnetic resonance imaging (MRI) is tedious, time-consuming, and error-prone. We evaluate whether assessment of new, expanding, and contrast-enhancing MS lesions can be done more time-efficiently by radiologists with assistance of artificial intelligence (AI). Methods Baseline and three follow-up (FU) MRIs of thirty-five consecutive patients diagnosed with MS were assessed by a radiologist manually, and with assistance of an AI-tool. Results were discussed with a consultant neuroradiologist and time metrics were evaluated. Results The mean reading time for the resident radiologist was 9.05 min (95CI: 6.85–11:25). With AI-assistance, the reading time was reduced by 2.83 min (95CI: 3.28–2.41, p < 0.001). The reading decreased steadily from baseline to FU3 for the resident radiologist (9.85 min baseline, 9.21 FU1, 8.64 FU2 and 8.44 FU3, p < 0.001). Assistance of AI further remarkably decreased reading times during follow-ups (3.29 min FU1, 3.92 FU2, 3.79 FU3, p < 0.001) but not at baseline (0.26 min, p = 0.96). The baseline reading time of the resident radiologist was 5.04 min (p < 0.001), with each lesion adding 0.14 min (p < 0.001). There was a substantial decrease in the baseline reading time from 5.04 min to 1.59 min (p = 0.23) with AI-assistance. Discussion of the reading results of the resident with the neuroradiology consultant (as usual in clinical routine) was exemplary done for FU-3 MRIs and added another 3 min (CI:2.27–3.76) to the reading time without AI-assistance. Conclusion We found that AI-assisted reading of MRIs of patients with MS may be faster than evaluating these MRIs without AI-assistance.

Keywords

Male, Adult, Artificial intelligence, LESIONS, Multiple Sclerosis, Time Factors, SEGMENTATION, Brain, Automated assessment, Middle Aged, DIAGNOSIS, Magnetic Resonance Imaging, Multiple Sclerosis/diagnostic imaging [MeSH] ; Female [MeSH] ; Brain/diagnostic imaging [MeSH] ; Adult [MeSH] ; Humans [MeSH] ; Artificial intelligence ; Middle Aged [MeSH] ; MRI ; AI ; Time Factors [MeSH] ; Artificial Intelligence [MeSH] ; Multiple sclerosis ; Male [MeSH] ; Image Interpretation, Computer-Assisted/methods [MeSH] ; Magnetic resonance imaging ; Magnetic Resonance Imaging/methods [MeSH] ; Automated assessment ; Diagnostic Neuroradiology, Multiple sclerosis, Magnetic resonance imaging, AI, Artificial Intelligence, Image Interpretation, Computer-Assisted, Humans, Female, MRI, Diagnostic Neuroradiology

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    3
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
3
Top 10%
Average
Average
Green
hybrid