Downloads provided by UsageCounts
handle: 20.500.14002/2189
Carrot chasing guidance law is one of the most widely used path following algorithms due to its simplicity and ease of implementation; however, it has a fixed parameter which leads to large cross-tracking errors during different navigational conditions. This study proposes an innovative approach to carrot chasing algorithm to minimize cross-tracking errors. Pattern search optimization technique is integrated with carrot chasing guidance law to determine unique virtual target points obtained by flexible parameters instead of a fixed parameter. Proposed smart carrot chasing guidance law (SCCGL) provides stable and accurate path following even for different navigational conditions of unmanned surface vehicle (USV). To the best of our knowledge, we are the first to apply pattern search optimization technique to carrot chasing guidance law while USV is performing multi-tasks of predefined paths. This novelty significantly reduces both cross tracking errors and computational costs. Firstly, SCCGL is tested and compared with traditional carrot chasing algorithm in the numerical simulator for several navigational conditions such as different lists of waypoints, different initial locations, and different maximum turning rates of USV. SCCGL automatically determines optimal parameters to make stable and accurate navigation. SCCGL significantly reduces cross tracking errors compared to classical carrot chasing algorithm. This is the first contribution of this paper. Secondly, genetic algorithm optimization method has been implemented to carrot chasing guidance law instead of pattern search optimization technique. Genetic algorithm causes the total simulation time to be quite long. The proposed SCCGL (pattern search integrated carrot chasing guidance law) gives optimum results 20 times faster than the genetic algorithm. This is the second and main contribution of developed SCCGL method. It is observed that SCCGL provides best navigation with minimum cross-tracking errors and minimum computational cost compared to the classical carrot chasing algorithm and other optimization technique.
Path-following algorithm, Path following algorithm, Errors, Genetic algorithms, Cross-tracking error, cross-tracking error, pattern search algorithm, Navigation, unmanned surface vehicle, Pattern search optimizations, Carrot-chasing guidance law, Tracking errors, carrot-chasing guidance law, Unmanned surface vehicles, Optimization techniques, Guidance laws, Path following, Pattern search algorithm, Condition
Path-following algorithm, Path following algorithm, Errors, Genetic algorithms, Cross-tracking error, cross-tracking error, pattern search algorithm, Navigation, unmanned surface vehicle, Pattern search optimizations, Carrot-chasing guidance law, Tracking errors, carrot-chasing guidance law, Unmanned surface vehicles, Optimization techniques, Guidance laws, Path following, Pattern search algorithm, Condition
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 1 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
| views | 35 | |
| downloads | 16 |

Views provided by UsageCounts
Downloads provided by UsageCounts