
arXiv: 2402.16548
AbstractThe solution approximation for partial differential equations (PDEs) can be substantially improved using smooth basis functions. The recently introduced mollified basis functions are constructed through mollification, or convolution, of cell‐wise defined piecewise polynomials with a smooth mollifier of certain characteristics. The properties of the mollified basis functions are governed by the order of the piecewise functions and the smoothness of the mollifier. In this work, we exploit the high‐order and high‐smoothness properties of the mollified basis functions for solving PDEs through the point collocation method. The basis functions are evaluated at a set of collocation points in the domain. In addition, boundary conditions are imposed at a set of boundary collocation points distributed over the domain boundaries. To ensure the stability of the resulting linear system of equations, the number of collocation points is set larger than the total number of basis functions. The resulting linear system is overdetermined and is solved using the least square technique. The presented numerical examples confirm the convergence of the proposed approximation scheme for Poisson, linear elasticity, and biharmonic problems. We study in particular the influence of the mollifier and the spatial distribution of the collocation points.
000, linear elasticity, Numerical Analysis (math.NA), polytopic mesh, high-smoothness propery, 510, Poisson/biharmonic problem, least square method, Numerical and other methods in solid mechanics, smooth basis function, Classical linear elasticity, FOS: Mathematics, convolution, Mathematics - Numerical Analysis, 40 Engineering
000, linear elasticity, Numerical Analysis (math.NA), polytopic mesh, high-smoothness propery, 510, Poisson/biharmonic problem, least square method, Numerical and other methods in solid mechanics, smooth basis function, Classical linear elasticity, FOS: Mathematics, convolution, Mathematics - Numerical Analysis, 40 Engineering
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 2 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
