Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao https://doi.org/10.1...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
https://doi.org/10.1109/cbmi50...
Article . 2021 . Peer-reviewed
License: IEEE Copyright
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Hal
Conference object . 2021
Data sources: Hal
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
DBLP
Conference object
Data sources: DBLP
versions View all 5 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Deep learning searches for gravitational wave stochastic backgrounds

Authors: Andrei Utina; Francesco Marangio; Filip Morawski; Alberto Iess; Tania Regimbau; Giuseppe Fiameni; Elena Cuoco;

Deep learning searches for gravitational wave stochastic backgrounds

Abstract

The background of gravitational waves (GW) has long been studied and remains one of the most exciting aspects in the observation and analysis of gravitational radiation. The paper focuses on the search for the background of gravitational waves using deep neural networks. An astrophysical background due to the presence of many binary black hole coalescences was simulated for Advanced LIGO O3 sensitivity and the Einstein Telescope (ET) design sensitivity. The detection pipeline targets signal data out of the noisy detector background. Its architecture comprises of simulated whitened data as input to three classes of deep neural networks algorithms: a 1D and a 2D convolutional neural network (CNN) and a Long Short Term Memory (LSTM) network. It was found that all three algorithms could distinguish signals from noise with high precision for the ET sensitivity, but the current sensitivity of LIGO is too low to permit the algorithms to learn signal features from the input vectors.

Countries
Netherlands, Italy
Keywords

LIGO: sensitivity, gravitational radiation: stochastic, deep learning searches, deep neural networks algorithms, Sensitivity, Einstein Telescope, LIGO, [PHYS.GRQC] Physics [physics]/General Relativity and Quantum Cosmology [gr-qc], Detectors, artificial intelligence, neural nets, gravitational waves, simulated whitened data, black hole: coalescence, Long Short Term Memory network, LSTM, Neural networks, CNN, gravitational wave stochastic backgrounds, 2D convolutional neural network, noise, data analysis method, neural network, black hole: binary: coalescence, binary black hole coalescences, ET sensitivity, Time series analysis, Gravitational waves, exciting aspects, gravitational wave detectors, Deep Learning, Stochastic processes, Gravitational Wave Backgrounds, Advanced LIGO O3 sensitivity, noisy detector background, CNN; Deep Learning; ET; Gravitational Wave Backgrounds; LIGO; LSTM, gravitational radiation: background, gravitational radiation, Einstein Telescope design sensitivity, Deep learning, astrophysical background, black holes, background: stochastic, gravitational radiation detector, detection pipeline targets, black hole: binary, network, learning (artificial intelligence), ET

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    2
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
2
Average
Average
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!