Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Energy Exploration &...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Energy Exploration & Exploitation
Article . 2023 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Using swarm intelligence optimization algorithms to predict the height of fractured water-conducting zone

Authors: Dekang Zhao; Zhenghao Li; Guorui Feng; Fulong Wang; Chenwei Hao; Yaming He; Shuning Dong;

Using swarm intelligence optimization algorithms to predict the height of fractured water-conducting zone

Abstract

The accurate calculation of the height of fractured water-conducting zone (FWCZ) is of great significance for mine optimization design, water disaster prevention, and safety production of the coal mines. In this article, a height-prediction model of FWCZ based on extreme learning machine (ELM) is proposed. To address the issues of low prediction accuracy and challenging parameter optimization, we optimized the ELM model using the gray-wolf optimization algorithm (GOA), whale optimization algorithm (WOA), and salp optimization algorithm (SOA). These optimization algorithms mitigate the issues of slow convergence, poor stability, and local optimality associated with traditional neural networks. The mining depth, mining height, overburden strata structure, working face length, and coal seam dip angle are selected as the main controlling factors for the height of FWCZ. A total of 42 fields-measured samples are collected and divided into 2 subsets for training and validating with a ratio of 36/6. The prediction capability of GOA-ELM, WOA-ELM, and SOA-ELM models are evaluated and compared, and the results show that the calculation results of the three models are optimized compared with the ELM model. The prediction capability of GOA and WOA are similar, while the prediction results of SOA-ELM are better than the other two models, and the relative errors of the test sets are all less than 10%. Therefore, the SOA-ELM model is finally applied to predict the height of FWCZ formed after the mining of No.15 coal seam in Xinjian Coal Mine. Finally, we verified the prediction results using measured data from the borehole television detection instrument, which showed good consistency. This provides further evidence of the effectiveness of the swarm intelligence optimization algorithm in predicting the height of FWCZ.

Related Organizations
Keywords

TK1001-1841, Production of electric energy or power. Powerplants. Central stations, TJ807-830, Renewable energy sources

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    6
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
6
Top 10%
Average
Top 10%
gold