
Breast cancer is a serious threat to the womankind and it leads the susceptible kinds of cancer for women. The mortality rates due to breast cancer increases every single year and the World Health Organization (WHO) aims to reduce the occurrence of breast cancer by at least 2.5% per year. The occurrence of breast cancer can be minimized only when periodical screening is carried out. Mammography is one of the effective screening procedure, which can effectively locate earlier signs of breast cancer. As an aid, this work aims to present a system for the breast cancer detection and classification. This work is segregated into four phases and all these phases aim to enhance the classification performance. The efficiency of the proposed work is evaluated against the state-of-the-art approaches and the proposed contribution to the medical science. The computer-aided diagnostic system (CADS) proves 98.2% accuracy, with minimal false positive and false negative rates in a reasonable period of time.
Breast cancer detection, T59.5, Automation, classification, Control engineering systems. Automatic machinery (General), TJ212-225, CADS, supervised algorithm, optimization
Breast cancer detection, T59.5, Automation, classification, Control engineering systems. Automatic machinery (General), TJ212-225, CADS, supervised algorithm, optimization
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 5 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
