
handle: 11368/3084239
Graph-based Genetic Programming (GGP) can create interpretable control policies in graph form, but faces challenges such as local optima and solution fragility, which undermine its efficacy. Quality-Diversity (QD) has been effective in addressing similar issues, traditionally in Artificial Neural Network (ANN) optimization. In this paper, we introduce a general Graph Quality-Diversity (G-QD) framework to enhance the performance of GGP with QD optimization, obtaining a variety of interpretable, effective, and resilient policies. Using Cartesian Genetic Programming (CGP) as the GGP technique and MAP-Elites (ME) as the QD algorithm, we leverage a combination of behavior and graph structural descriptors. Experimenting on two navigation and two locomotion continuous control tasks, our framework yields an array of effective yet behaviorally and structurally diverse policies, surpassing the performance of a standard Genetic Algorithm (GA). The resulting solution set also increases interpretability, allowing for insight into the control tasks. Additionally, our experiments demonstrate the robustness of the to faults such as sensor damage.
Graph-based Genetic Programming, Graph-based Genetic Programming; Cartesian Genetic Programming; Quality-Diversity; MAP-Elites; Interpretable Policy; Continuous Control, Interpretable Policy, MAP-Elite, Continuous Control, Cartesian Genetic Programming, Quality-Diversity
Graph-based Genetic Programming, Graph-based Genetic Programming; Cartesian Genetic Programming; Quality-Diversity; MAP-Elites; Interpretable Policy; Continuous Control, Interpretable Policy, MAP-Elite, Continuous Control, Cartesian Genetic Programming, Quality-Diversity
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 10 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
