
The present study investigates the impact of magnetic field on the interaction of stationary, rigid filament-like structures in biomagnetic fluid flow, which has broad applications in mixing, transport, targeted drug delivery, and the development of magnetic devices. This work focuses on modeling a stationary, rigid, inclined filament fixed at the bottom of a channel within biomagnetic flow using the immersed boundary method. The inclined filament is positioned at various angles (θ = 450, 900 and 1350) in biomagnetic flow. Numerical simulations reveal that the fluid-filament interaction exhibits increased recirculation zones downstream when influenced by a magnetic field. Interestingly, when the filament is placed at θ = 450, there is a reduction in vortex formation upstream. The study also examines the effect of parameters such as the Reynolds number (Re) and the magnetic number (Mn) on the size of vortex formation. It is evident that as the Re and Mn increase the size of recirculation zones and secondary vortex formation also increases.
Computer Assisted Methods in Engineering and Science, 32(1): 24-41, 2025
rigid inclined filament, TK7885-7895, Computer engineering. Computer hardware, immersed boundary method, biomagnetic fluid, magnetic number, Mechanics of engineering. Applied mechanics, TA349-359
rigid inclined filament, TK7885-7895, Computer engineering. Computer hardware, immersed boundary method, biomagnetic fluid, magnetic number, Mechanics of engineering. Applied mechanics, TA349-359
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
