
pmid: 24728859
Abstract Motivation: Gene network inference (GNI) algorithms enable the researchers to explore the interactions among the genes and gene products by revealing these interactions. The principal process of the GNI algorithms is to obtain the association scores among genes. Although there are several association estimators used in different applications, there is no commonly accepted estimator as the best one for the GNI applications. In this study, 27 different interaction estimators were reviewed and 14 most promising ones among them were evaluated by using three popular GNI algorithms with two synthetic and two real biological datasets belonging to Escherichia coli bacteria and Saccharomyces cerevisiae yeast. Influences of the Copula Transform (CT) pre-processing operation on the performance of the interaction estimators are also observed. This study is expected to assist many researchers while studying with GNI applications. Results: B-spline, Pearson-based Gaussian and Spearman-based Gaussian association score estimators outperform the others for all datasets in terms of the performance and runtime. In addition to this, it is observed that, when the CT operation is used, inference performances of the estimators mostly increase, especially for two synthetic datasets. Detailed evaluations and discussions are given in the experimental results. Contact: gokmen.altay@bahcesehir.edu.tr Supplementary information: Supplementary data are available at Bioinformatics online.
Time Factors, Computational Biology, Gene Regulatory Networks, Saccharomyces cerevisiae, Algorithms
Time Factors, Computational Biology, Gene Regulatory Networks, Saccharomyces cerevisiae, Algorithms
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 20 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
