
Resource allocation is the optimal distribution in a limited number of resources available for certain activities. The allocation of the resources for a large number of activities requires exponentially multiplying a computation cost. Therefore, the resource allocation problem is known as NP-Hard problem in the literature. In this study, a multi-objective binary artificial bee colony algorithm has been proposed for solving the multi-objective resource allocation problems. The proposed algorithm has benefited from the robust structure and easy implementation properties of the artificial bee colony algorithm. The contribution is to introduce the multi-objective version of the artificial bee colony algorithm with advanced local search and binary format using transfer functions. The multi-objective binary artificial bee colony algorithm has been improved as two versions using sigmoid and hyperbolic tangent transfer functions to be able to search in the binary search space. With the proposed algorithms, the multi-objective resource allocation problems in the literature are solved, and the algorithms are compared with other algorithms that develop for the same problems. The results obtained show that the proposed algorithms give effective results on the problem. Especially, in large-scale problems, higher accuracy values are reached with a smaller number of evaluations.
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 10 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
