
Orthogonal time frequency space (OTFS) is a recently proposed modulation scheme which multiplexes information symbols in the delay-Doppler domain to combat severe Doppler shifts in high mobility wireless communications. In this paper, we classify all the OTFS variants depending on whether a cyclic prefix (CP) or zero padding (ZP) is added to each block or to the entire frame. We then present the general input-output relations for integer and fractional delays and Doppler shifts. Further, we present a low-complexity universal maximum ratio combining (MRC) detector for all OTFS variants, which has the lowest complexity among other known OTFS detection schemes at no loss of performance. Finally, we derive the input-output relation for overspread channels, where the channel delay spreads can exceed the OTFS block duration. Simulation results demonstrate that the MRC detection offers same performance for all OTFS variants and can also be effectively used for overspread channels.
delay–time domain, maximal ratio combining detector, overspread channel, input-output relation, Electrical engineering. Electronics. Nuclear engineering, delay–Doppler domain, OTFS, TK1-9971
delay–time domain, maximal ratio combining detector, overspread channel, input-output relation, Electrical engineering. Electronics. Nuclear engineering, delay–Doppler domain, OTFS, TK1-9971
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 18 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
