Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of Forensic ...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Journal of Forensic Sciences
Article . 2025 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Optimized detection and localization of copy‐rotate‐move forgeries using biogeography‐based optimization algorithm

Authors: Deepak Joshi; Abhishek Kashyap; Parul Arora;

Optimized detection and localization of copy‐rotate‐move forgeries using biogeography‐based optimization algorithm

Abstract

AbstractIn today's digital era, the proliferation of image processing tools has made image forgery detection a critical challenge. Malicious actors exploit these tools to manipulate images, spreading misinformation and misleading society. Existing tampering detection methods struggle with detecting complex transformations such as copy‐rotate‐move forgeries, often facing limitations in computational efficiency, robustness, and accuracy. Many approaches rely on traditional feature extraction techniques that fail under severe transformations or require extensive processing time. To address these shortcomings, we propose a novel and computationally efficient algorithm that integrates Radon Transform with Biogeography‐Based Optimization (BBO) for enhanced copy‐rotate‐move forgery detection. Unlike conventional optimization techniques, BBO effectively enhances feature selection and matching, improving detection robustness against rotation and scale variations. The proposed algorithm has been rigorously evaluated on multiple benchmark datasets, demonstrating superior performance in terms of F1‐score, recall, and accuracy compared to existing state‐of‐the‐art methods. The results affirm that our approach significantly improves forgery localization while maintaining computational efficiency, making it a promising solution for real‐world digital forensics applications.

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    1
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
1
Average
Average
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!