Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Institutional Knowle...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
IEEE Transactions on Neural Networks and Learning Systems
Article . 2025 . Peer-reviewed
License: IEEE Copyright
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Context-Aware REpresentation: Jointly Learning Item Features and Selection From Triplets

Authors: Rodrigo Alves; Antoine Ledent;

Context-Aware REpresentation: Jointly Learning Item Features and Selection From Triplets

Abstract

In areas of machine learning such as cognitive modeling or recommendation, user feedback is usually context-dependent. For instance, a website might provide a user with a set of recommendations and observe which (if any) of the links were clicked by the user. Similarly, there is growing interest in the so-called "odd-one-out" learning setting, where human participants are provided with a basket of items and asked which is the most dissimilar to the others. In both of those cases, the presence of all the items in the basket can influence the final decision. In this article, we consider a classification task where each input consists of three items (a triplet), and the task is to predict which of the three will be selected. Our aim is not only to return accurate predictions for the selection task, but also to additionally provide interpretable feature representations for both the context and for each individual item. To achieve this, we introduce CARE, a specialized neural network architecture that yields Context-Aware REpresentations of items based on observations of triplets of items alone. We demonstrate that, in addition to achieving state-of-the-art performance at the selection task, our model can produce meaningful representations both for each item, as well for each context (triplet of items). This is done using only triplet responses: CARE has no access to supervised item-level information. In addition, we prove parameter counting generalization bounds for our model in the i.i.d. setting, demonstrating that the apparent sample sparsity arising from the combinatorially large number of possible triplets is no obstacle to efficient learning.

Keywords

Triplets, Databases and Information Systems, Triplet Loss, OS and Networks, Interpretability, Item Profiling, Learning Theory, 004

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    1
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
1
Average
Average
Average
Green