Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Neuropsychiatric Dis...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Neuropsychiatric Disease and Treatment
Article . 2022 . Peer-reviewed
License: CC BY NC
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Neuropsychiatric Disease and Treatment
Article . 2022 . Peer-reviewed
Data sources: Dove Medical Press
versions View all 5 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

XGBoost Machine Learning Algorithm for Prediction of Outcome in Aneurysmal Subarachnoid Hemorrhage

Authors: Ruoran Wang; Jing Zhang; Baoyin Shan; Min He; Jianguo Xu;

XGBoost Machine Learning Algorithm for Prediction of Outcome in Aneurysmal Subarachnoid Hemorrhage

Abstract

Patients suffered aneurysmal subarachnoid hemorrhage (aSAH) usually develop poor survival and functional outcome. Evaluating aSAH patients at high risk of poor outcome is necessary for clinicians to make suitable therapeutical strategy. This study is conducted to develop prognostic model using XGBoost (extreme gradient boosting) algorithm in aSAH.A total of 351 aSAH patients admitted to West China hospital were identified. Patients were divided into training set and test set with ratio of 7:3 to testify the predictive value of XGBoost based prognostic model. Additionally, logistic regression model was also constructed and compared with XGBoost based model. Area under the receiver operating characteristic curve (AUC), sensitivity and specificity were calculated to evaluate the value of XGBoost and logistic regression.There were 74 (21.1%) non-survivors and 148 (42.1%) patients with unfavorable functional outcome. Non-survivors had older age (p=0.025), lower Glasgow coma scale (GCS) (p<0.001), higher World Federation of Neurosurgical Societies WFNS score (p<0.001), mFisher score (p<0.001). The incidence of intraventricular hemorrhage (IVH) (p=0.025) and delayed cerebral ischemia (DCI) (p<0.001) was higher in non-survivors than survivors. The AUC of XGBoost model for predicting mortality and unfavorable functional outcome were 0.950 and 0.958, which were higher than 0.767 and 0.829 of logistic regression model.XGBoost based model is more precise than logistic regression model in predicting outcome of aSAH patients. Using XGBoost prognostic model is helpful for clinicians to identify high-risk aSAH patients and therefore strengthen medical care.

Related Organizations
Keywords

Neuropsychiatric Disease and Treatment, Neurosciences. Biological psychiatry. Neuropsychiatry, artificial intelligence, machine learning, extreme gradient boosting, aneurysmal subarachnoid hemorrhage, prognosis, Neurology. Diseases of the nervous system, RC346-429, RC321-571, Original Research

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    30
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
30
Top 10%
Top 10%
Top 10%
Green
gold