
Deep Neural Networks (DNN) are gaining higher commercial values in computer vision applications, e.g., image classification, video analytics, etc. This calls for urgent demands of the intellectual property (IP) protection of DNN models. In this paper, we present a novel watermarking scheme to achieve the ownership verification of DNN architectures. Existing works all embedded watermarks into the model parameters while treating the architecture as public property. These solutions were proven to be vulnerable by an adversary to detect or remove the watermarks. In contrast, we claim the model architectures as an important IP for model owners, and propose to implant watermarks into the architectures. We design new algorithms based on Neural Architecture Search (NAS) to generate watermarked architectures, which are unique enough to represent the ownership, while maintaining high model usability. Such watermarks can be extracted via side-channel-based model extraction techniques with high fidelity. We conduct comprehensive experiments on watermarked CNN models for image classification tasks and the experimental results show our scheme has negligible impact on the model performance, and exhibits strong robustness against various model transformations and adaptive attacks.
The paper has been accepted by IEEE Transactions on Circuits and Systems for Video Technology
FOS: Computer and information sciences, Computer Science - Cryptography and Security, :Computer science and engineering::Computing methodologies::Artificial intelligence [Engineering], Deep Neural Network, Watermarking, 025, Engineering::Computer science and engineering, 004, Cache Side Channel, :Computer science and engineering [Engineering], Engineering::Computer science and engineering::Computing methodologies::Artificial intelligence, Cryptography and Security (cs.CR)
FOS: Computer and information sciences, Computer Science - Cryptography and Security, :Computer science and engineering::Computing methodologies::Artificial intelligence [Engineering], Deep Neural Network, Watermarking, 025, Engineering::Computer science and engineering, 004, Cache Side Channel, :Computer science and engineering [Engineering], Engineering::Computer science and engineering::Computing methodologies::Artificial intelligence, Cryptography and Security (cs.CR)
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 9 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
