Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ IEEE Accessarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
IEEE Access
Article . 2020 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
IEEE Access
Article
License: CC BY NC ND
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
IEEE Access
Article . 2020
Data sources: DOAJ
https://dx.doi.org/10.60692/aa...
Other literature type . 2020
Data sources: Datacite
https://dx.doi.org/10.60692/rd...
Other literature type . 2020
Data sources: Datacite
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Epigenetic Algorithm-Based Detection Technique for Network Attacks

تقنية الكشف القائمة على الخوارزمية اللاجينية لهجمات الشبكة
Authors: Mehdi Ezzarii; Hamid El Ghazi; Hassan El Ghazi; Faissal El Bouanani;

Epigenetic Algorithm-Based Detection Technique for Network Attacks

Abstract

De nos jours, la question de la cybersécurité implique de nouvelles stratégies pour se protéger contre les menaces avancées et les attaques inconnues. Le système de détection d'intrusion (IDS) est considéré comme un système robuste traitant de la détection d'attaques, en particulier les attaques inconnues et les anomalies. Plusieurs algorithmes basés sur IDS ont récemment été inspectés dans la littérature, parmi lesquels les algorithmes de renforcement bien connus, à savoir l'algorithme génétique (GA). De plus, l'algorithme basé sur l'épigénétique (EGA) est connu comme une version améliorée de l'AG assurant des performances élevées avec une complexité de calcul réduite. Son objectif principal est de converger dans un court laps de temps vers une solution optimale en agissant sur les opérateurs génétiques, à savoir la mutation et le croisement. Dans cet article, nous proposons un nouveau classificateur basé sur l'EGA pour IDS. En particulier, basé sur une base de données des trafics réseau, l'EGA est appliqué pour classer les attaques. Les résultats, effectués par simulation EGA, montrent que les performances de la technique proposée surpassent celles du classificateur de l'AG en obtenant un taux de détection élevé jusqu'à 98% et un temps de traitement plus rapide que celui de l'AG et d'autres algorithmes que nous avons comparés dans cet article.

Hoy en día, el problema de la ciberseguridad implica nuevas estrategias para protegerse contra amenazas avanzadas y ataques desconocidos. El sistema de detección de intrusiones (IDS) se considera un sistema robusto que se ocupa de la detección de ataques, en particular ataques y anomalías desconocidos. Varios algoritmos basados en IDS se han inspeccionado recientemente en la literatura, entre ellos los conocidos algoritmos de fortalecimiento, es decir, el algoritmo genético (GA). Además, el algoritmo basado en epigenética (EGA) se conoce como una versión mejorada de GA que garantiza un alto rendimiento con una complejidad computacional reducida. Su objetivo principal es converger en poco tiempo hacia una solución óptima actuando sobre los operadores genéticos, es decir, la mutación y el cruce. En este artículo, proponemos un nuevo clasificador basado en EGA para IDS.Especially, basado en una base de datos de tráfico de red, EGA se aplica para clasificar los ataques. Los resultados, realizados a través de la simulación EGA, muestran que el rendimiento de la técnica propuesta supera al del clasificador GA al obtener una alta tasa de detección de hasta el 98% y un tiempo de procesamiento más rápido que el de GA y otros algoritmos que hemos comparado en este artículo.

Nowadays, the cybersecurity issue involves new strategies to protect against advanced threats and unknown attacks.Intrusion detection system (IDS) is considered a robust system dealing with attacks detection, particularly unknown attacks and anomalies.Several IDS-based algorithms have been recently inspected in the literature, among them the well-known strengthen algorithms, i.e.Genetic algorithm (GA).Moreover, Epigenetic-based algorithm (EGA) is known as an improved version of GA ensuring high performance with reduced computational complexity.Its main goal is to converge within a short time towards an optimal solution by acting on genetic operators, namely mutation and crossover.In this article, we propose a new classifier based on EGA for IDS.Especially, based on a database of network traffics, EGA is applied to classify attacks.The results, performed through EGA simulation, show that the performance of the proposed technique outperforms the ones of GA classifier by obtaining a high detection rate up to 98% and a faster processing time than that of GA and other algorithms that we have compared in this article.

في الوقت الحاضر، تتضمن مشكلة الأمن السيبراني استراتيجيات جديدة للحماية من التهديدات المتقدمة والهجمات غير المعروفة. يعتبر نظام الكشف عن التسلل (IDS) نظامًا قويًا يتعامل مع الكشف عن الهجمات، لا سيما الهجمات غير المعروفة والشذوذ. تم فحص العديد من الخوارزميات المستندة إلى IDS مؤخرًا في الأدبيات، من بينها خوارزميات التعزيز المعروفة، أي الخوارزمية الجينية (GA). علاوة على ذلك، تُعرف الخوارزمية المستندة إلى الجينات (EGA) بأنها نسخة محسنة من GA تضمن أداءً عاليًا مع تقليل التعقيد الحسابي. إن هدفها الرئيسي هو التقارب في غضون فترة زمنية قصيرة نحو حل أمثل من خلال العمل على العوامل الوراثية، وهي الطفرة والتقاطع. في هذه المقالة، نقترح مصنفًا جديدًا يعتمد على EGA لـ IDS. على وجه الخصوص، استنادًا إلى قاعدة بيانات لحركة مرور الشبكة، يتم تطبيق EGA لتصنيف الهجمات. تُظهر النتائج، التي يتم إجراؤها من خلال محاكاة EGA، أن أداء التقنية المقترحة يتفوق على أداء مصنف GA من خلال الحصول على معدل اكتشاف مرتفع يصل إلى 98 ٪ ووقت معالجة أسرع من ذلك لـ GA الأخرى والخوارزميات التي قمنا بمقارنتها في هذه المقالة.

Keywords

Computer Networks and Communications, security, Biochemistry, Gene, Characterization and Detection of Android Malware, genetic algorithm, Algorithms and Architectures for Packet Classification, Computer network, Epigenetic algorithm, Computer science, TK1-9971, Intrusion Detection, Algorithm, Detection, Chemistry, Hardware and Architecture, network, Computer Science, Physical Sciences, Signal Processing, Network Intrusion Detection and Defense Mechanisms, intrusion detection system, Epigenetics, Electrical engineering. Electronics. Nuclear engineering, Botnet Detection

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    4
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
4
Top 10%
Average
Average
gold