
handle: 11568/1025512
The paper presents a mathematical model for processing of physics experimental data in the form of a non-Markovian infinite-server multi-resource queuing system with Markov modulated Poisson process arrivals and arbitrary service time. It is proved that the joint steady-state probability distribution of the total volume of the occupied resource of each type converges to a multidimensional Gaussian distribution under the asymptotic condition of the growing intensity of the arrival process. The parameters of this asymptotic distribution are derived.
системы массового обслуживания, немарковская многоресурсная система массового обслуживания, математические модели, processing of experimental data; resource queuing systems, асимптотическое распределение
системы массового обслуживания, немарковская многоресурсная система массового обслуживания, математические модели, processing of experimental data; resource queuing systems, асимптотическое распределение
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 10 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
