
arXiv: 2103.16647
In this paper, we present the first outer approximation algorithm for multi-objective mixed-integer linear programming problems with any number of objectives. The algorithm also works for certain classes of non-linear programming problems. It produces the non-dominated extreme points as well as the facets of the convex hull of these points. The algorithm relies on an oracle which solves single-objective weighted-sum problems and we show that the required number of oracle calls is polynomial in the number of facets of the convex hull of the non-dominated extreme points in the case of multiobjective mixed-integer programming (MOMILP). Thus, for MOMILP problems for which the weighted-sum problem is solvable in polynomial time, the facets can be computed with incremental-polynomial delay. From a practical perspective, the algorithm starts from a valid lower bound set for the non-dominated extreme points and iteratively improves it. Therefore it can be used in multi-objective branch-and-bound algorithms and still provide a valid bound set at any stage, even if interrupted before converging. Moreover, the oracle produces Pareto optimal solutions, which makes the algorithm also attractive from the primal side in a multi-objective branch-and-bound context. Finally, the oracle can also be called with any relaxation of the primal problem, and the obtained points and facets still provide a valid lower bound set. A computational study on a set of benchmark instances from the literature and new non-linear multi-objective instances is provided.
21 pages
Optimization and Control (math.OC), FOS: Mathematics, Mathematics - Optimization and Control
Optimization and Control (math.OC), FOS: Mathematics, Mathematics - Optimization and Control
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 1 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
