
In humanitarian relief logistics, providing a safe place for evacuees, supplying relief commodities and designing a proper telecommunication infrastructure, for fast communications during disaster, are important issues. Therefore, in this paper, we develop a fuzzy scenario-based optimization model concerning location of shelters, relief distribution centers and telecommunication towers. Towards effective management and reliable servicing, telecommunication towers and shelters are considered to constitute integrated facilities (shelter-TTs). Moreover, to enhance efficiency of emergency services during disaster, backup relief distribution centers, and to approach the model to the real world, failure probabilities in the routes and the relief distribution centers are considered. The problem is formulated in a nonlinear and multi-objective model. Nonlinearity is treated by applying heuristic arguments in conjunction with Lp-metrics method. Finally, the developed model for the case study of flood disaster in an urban district in Iran is implemented. The results demonstrate that the proposed model can help make decisions on both the preparation and response phases in humanitarian relief logistics.
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 17 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
