Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Cardiovascular Diabe...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Cardiovascular Diabetology
Article . 2024 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
PubMed Central
Other literature type . 2024
License: CC BY
Data sources: PubMed Central
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Cardiovascular Diabetology
Article . 2024
Data sources: DOAJ
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
VBN
Article . 2024
License: CC BY
Data sources: VBN
versions View all 6 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Exploring the prognostic impact of triglyceride-glucose index in critically ill patients with first-ever stroke: insights from traditional methods and machine learning-based mortality prediction

Authors: Chen, Yang; Yang, Zhenkun; Liu, Yang; Li, Yuanjie; Zhong, Ziyi; McDowell, Garry; Ditchfield, Coleen; +6 Authors

Exploring the prognostic impact of triglyceride-glucose index in critically ill patients with first-ever stroke: insights from traditional methods and machine learning-based mortality prediction

Abstract

Abstract Background The incidence and mortality of first-ever strokes have risen sharply, especially in the intensive care unit (ICU). Emerging surrogate for insulin resistance, triglyceride-glucose index (TyG), has been linked to stroke prognosis. We aims to explore the relationships between TyG with ICU all-cause mortality and other prognosis, and to develop machine learning (ML) models in predicting ICU all-cause mortality in the first-ever strokes. Methods We included first-ever stroke patients from the eICU Collaborative Research Database in 2014–2015 as the primary analysis cohort (then divided into training and internal validation cohorts) and from local hospital’s ICUs as the external validation cohort. Multivariate Cox proportional hazards models and restricted cubic spline analyses were used to evaluate the association between TyG and ICU/hospital all-cause mortality. Linear regression and correlation analyses were performed to examine the relationships between TyG with length of ICU/hospital stay and Glasgow Coma Score. Results The primary analysis cohort included 3173 first-ever strokes (median age 68.0 [55.0–68.0] years; 63.0% male), while the external validation cohort included 201 first-ever strokes (median age 71.0 [63.0–77.0] years; 62.3% male). Multivariate Cox proportional hazards models revealed that the high TyG group (TyG ≥ 9.265) was associated with higher ICU (HR 1.92, 95% CI 1.38–2.66) and hospital (HR 1.69, 95% CI 1.32–2.16) all-cause mortality, compared with low TyG group (TyG < 9.265). TyG was also correlated with ICU length of stay (r = 0.077), hospital length of stay (r = 0.042), and Glasgow Coma Score (r = -0.132). TyG and other six features were used to construct ML models. The random forest model performed best in internal validation with AUC (0.900) and G-mean (0.443), and in external validation with AUC (0.776) and G-mean (0.399). Conclusion TyG (optimal cut-off: 9.265) was identified as an independent risk factor for ICU and hospital all-cause mortality in first-ever strokes. The ML model incorporating TyG demonstrated strong predictive performance. This emphasises the importance of insulin resistance (with TyG as a surrogate measure) in the prognostic assessment and early risk stratification of first-time stroke patients.

Keywords

Male, Blood Glucose, China, Time Factors, Databases, Factual, Critical Illness, First-ever stroke, Risk Assessment, Stroke/mortality, Triglyceride-glucose index, Machine Learning, Risk Factors, Predictive Value of Tests, Cause of Death, Diseases of the circulatory (Cardiovascular) system, Humans, Intensive care unit, Hospital Mortality, China/epidemiology, Aged, Retrospective Studies, Blood Glucose/metabolism, Research, Reproducibility of Results, Insulin resistance, Middle Aged, Length of Stay, All-cause mortality, Prognosis, Stroke, Critical Illness/mortality, Triglycerides/blood, Intensive Care Units, RC666-701, Female, Biomarkers/blood, Biomarkers

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    13
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
13
Top 10%
Average
Top 10%
Green
gold