
arXiv: 2412.00659
Bilevel optimization has gained considerable attention due to its broad applicability across various fields. While several studies have investigated the convergence rates in the strongly-convex-strongly-convex (SC-SC) setting, no prior work has proven that a single-loop algorithm can achieve linear convergence. This paper employs a small-gain theorem in {robust control theory} to demonstrate that a single-loop algorithm based on the implicit function theorem attains a linear convergence rate of $\mathcal{O}(ρ^{k})$, where $ρ\in(0,1)$ is specified in Theorem 3. Specifically, We model the algorithm as a dynamical system by identifying its two interconnected components: the controller (the gradient or approximate gradient functions) and the plant (the update rule of variables). We prove that each component exhibits a bounded gain and that, with carefully designed step sizes, their cascade accommodates a product gain strictly less than one. Consequently, the overall algorithm can be proven to achieve a linear convergence rate, as guaranteed by the small-gain theorem. The gradient boundedness assumption adopted in the single-loop algorithm (\cite{hong2023two, chen2022single}) is replaced with a gradient Lipschitz assumption in Assumption 2.2. To the best of our knowledge, this work is first-known result on linear convergence for a single-loop algorithm.
Optimization and Control (math.OC), FOS: Mathematics, Mathematics - Optimization and Control
Optimization and Control (math.OC), FOS: Mathematics, Mathematics - Optimization and Control
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
