Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ arXiv.org e-Print Ar...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
https://dx.doi.org/10.48550/ar...
Article . 2024
License: CC BY
Data sources: Datacite
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Linear Convergence Analysis of Single-loop Algorithm for Bilevel Optimization via Small-gain Theorem

Authors: Li, Jianhui; Pu, Shi; Chen, Jianqi; Wu, Junfeng;

Linear Convergence Analysis of Single-loop Algorithm for Bilevel Optimization via Small-gain Theorem

Abstract

Bilevel optimization has gained considerable attention due to its broad applicability across various fields. While several studies have investigated the convergence rates in the strongly-convex-strongly-convex (SC-SC) setting, no prior work has proven that a single-loop algorithm can achieve linear convergence. This paper employs a small-gain theorem in {robust control theory} to demonstrate that a single-loop algorithm based on the implicit function theorem attains a linear convergence rate of $\mathcal{O}(ρ^{k})$, where $ρ\in(0,1)$ is specified in Theorem 3. Specifically, We model the algorithm as a dynamical system by identifying its two interconnected components: the controller (the gradient or approximate gradient functions) and the plant (the update rule of variables). We prove that each component exhibits a bounded gain and that, with carefully designed step sizes, their cascade accommodates a product gain strictly less than one. Consequently, the overall algorithm can be proven to achieve a linear convergence rate, as guaranteed by the small-gain theorem. The gradient boundedness assumption adopted in the single-loop algorithm (\cite{hong2023two, chen2022single}) is replaced with a gradient Lipschitz assumption in Assumption 2.2. To the best of our knowledge, this work is first-known result on linear convergence for a single-loop algorithm.

Related Organizations
Keywords

Optimization and Control (math.OC), FOS: Mathematics, Mathematics - Optimization and Control

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Green