
pmid: 20494853
It has been shown that the 2-D cubic spline interpolation (CSI) proposed by Truong et al. is one of the best algorithms for image resampling or compression. Such a CSI algorithm together with the image coding standard, e.g., JPEG, can be used to obtain a modified image codec while still maintaining a good quality of the reconstructed image for higher compression ratios. In this paper, a fast direct computation algorithm is developed to improve the computational efficiency of the original FFT-based 2-D CSI methods. In fact, this algorithm computes the 2-D CSI directly without explicitly calculating the complex division usually needed in the FFT or Winograd discrete Fourier transform (WDFT) algorithm. In addition, this paper describes a novel way to derivate the 2-D CSI from the 1-D CSI by using the row-column method. This new fast 2-D CSI provides a regular and simple structure based upon linear correlations. Therefore, it can be implemented by the use of a modification of Kung’s pipeline structure and is naturally suitable for VLSI implementations. Experimental results show that the proposed new fast 2-D CSI algorithm can achieve almost the same CSI performance with much fewer arithmetic operations in comparison with existing efficient algorithms.
Numerical computation using splines
Numerical computation using splines
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 11 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
