
arXiv: 2509.18139
Recently, the demand for Machine Learning (ML) models that can balance accuracy, efficiency, and interpreability has grown significantly. Traditionally, there has been a tradeoff between accuracy and explainability in predictive models, with models such as Neural Networks achieving high accuracy on complex datasets while sacrificing internal transparency. As such, new rule-based algorithms such as FOLD-SE have been developed that provide tangible justification for predictions in the form of interpretable rule sets. The primary objective of this study was to compare FOLD-SE and FOLD-R++, both rule-based classifiers, in binary classification and evaluate how FOLD-SE performs against XGBoost, a widely used ensemble classifier, when applied to multi-category classification. We hypothesized that because FOLD-SE can generate a condensed rule set in a more explainable manner, it would lose upwards of an average of 3 percent in accuracy and F1 score when compared with XGBoost and FOLD-R++ in multiclass and binary classification, respectively. The research used data collections for classification, with accuracy, F1 scores, and processing time as the primary performance measures. Outcomes show that FOLD-SE is superior to FOLD-R++ in terms of binary classification by offering fewer rules but losing a minor percentage of accuracy and efficiency in processing time; in tasks that involve multi-category classifications, FOLD-SE is more precise and far more efficient compared to XGBoost, in addition to generating a comprehensible rule set. The results point out that FOLD-SE is a better choice for both binary tasks and classifications with multiple categories. Therefore, these results demonstrate that rule-based approaches like FOLD-SE can bridge the gap between explainability and performance, highlighting their potential as viable alternatives to black-box models in diverse classification tasks.
7 pages
Machine Learning, FOS: Computer and information sciences, Machine Learning (cs.LG)
Machine Learning, FOS: Computer and information sciences, Machine Learning (cs.LG)
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
