Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ arXiv.org e-Print Ar...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
https://dx.doi.org/10.48550/ar...
Article . 2025
License: arXiv Non-Exclusive Distribution
Data sources: Datacite
DBLP
Article
Data sources: DBLP
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Nonparametric learning of stochastic differential equations from sparse and noisy data

Authors: Arnab Ganguly 0001; Riten Mitra; Jinpu Zhou;

Nonparametric learning of stochastic differential equations from sparse and noisy data

Abstract

The paper proposes a systematic framework for building data-driven stochastic differential equation (SDE) models from sparse, noisy observations. Unlike traditional parametric approaches, which assume a known functional form for the drift, our goal here is to learn the entire drift function directly from data without strong structural assumptions, making it especially relevant in scientific disciplines where system dynamics are partially understood or highly complex. We cast the estimation problem as minimization of the penalized negative log-likelihood functional over a reproducing kernel Hilbert space (RKHS). In the sparse observation regime, the presence of unobserved trajectory segments makes the SDE likelihood intractable. To address this, we develop an Expectation-Maximization (EM) algorithm that employs a novel Sequential Monte Carlo (SMC) method to approximate the filtering distribution and generate Monte Carlo estimates of the E-step objective. The M-step then reduces to a penalized empirical risk minimization problem in the RKHS, whose minimizer is given by a finite linear combination of kernel functions via a generalized representer theorem. To control model complexity across EM iterations, we also develop a hybrid Bayesian variant of the algorithm that uses shrinkage priors to identify significant coefficients in the kernel expansion. We establish important theoretical convergence results for both the exact and approximate EM sequences. The resulting EM-SMC-RKHS procedure enables accurate estimation of the drift function of stochastic dynamical systems in low-data regimes and is broadly applicable across domains requiring continuous-time modeling under observational constraints. We demonstrate the effectiveness of our method through a series of numerical experiments.

35 pages, 6 figures

Keywords

Machine Learning, Methodology (stat.ME), FOS: Computer and information sciences, 62G05, 62M05, 60H10, 60J60, 46E22, 65C05, 65C35, Probability (math.PR), Methodology, FOS: Mathematics, Machine Learning (stat.ML), Probability, Machine Learning (cs.LG)

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Green