Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ arXiv.org e-Print Ar...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
https://dx.doi.org/10.48550/ar...
Article . 2024
License: CC BY NC ND
Data sources: Datacite
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Efficient and Universal Watermarking for LLM-Generated Code Detection

Authors: Li, Boquan; Fu, Zirui; Zhang, Mengdi; Zhang, Peixin; Sun, Jun; Wang, Xingmei;

Efficient and Universal Watermarking for LLM-Generated Code Detection

Abstract

Large language models (LLMs) have significantly enhanced the usability of AI-generated code, providing effective assistance to programmers. This advancement also raises ethical and legal concerns, such as academic dishonesty or the generation of malicious code. For accountability, it is imperative to detect whether a piece of code is AI-generated. Watermarking is broadly considered a promising solution and has been successfully applied to identify LLM-generated text. However, existing efforts on code are far from ideal, suffering from limited universality and excessive time and memory consumption. In this work, we propose a plug-and-play watermarking approach for AI-generated code detection, named ACW (AI Code Watermarking). ACW is training-free and works by selectively applying a set of carefully-designed, semantic-preserving and idempotent code transformations to LLM code outputs. The presence or absence of the transformations serves as implicit watermarks, enabling the detection of AI-generated code. Our experimental results show that ACW effectively detects AI-generated code, preserves code utility, and is resilient against code optimizations. Especially, ACW is efficient and is universal across different LLMs, addressing the limitations of existing approaches.

This work has been submitted to IEEE for possible publication

Keywords

FOS: Computer and information sciences, Cryptography and Security, Cryptography and Security (cs.CR)

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Green