
Unemployment is a condition where a person who is included in the labor force but does not have a job and is not actively looking for work. The number of unemployed is measured using the Open Unemployment Rate (OUR) indicator. OUR is obtained by comparing the number of job seekers and the number of labor force. This study aims to obtain a model of OUR in each district / city of Sumatra Island and what factors influence it using the Geographically Weighted Regression (GWR) method and Fixed Gaussian Kernel Function weighting, and describe predictor variables on thematic maps. The GWR method is one of the statistical methods that can prevent the presence of spatial aspects in the data. The parameters estimated by the local regression model vary at each location point and are estimated using the Weighted Least Square (WLS) method. Based on the research results obtained from this study, the GWR models obtained amounted to 154 different local models in each district / city on the island of Sumatra. Variables Labor Force Participation Rate, Population Growth Rate, Population Density and Average Years of Schooling have a significant influence on each location, meanwhile variable Percentage of Poor Population and variable Poverty Line have no influence on any location. These variables are able to explain the OUR by 57.2%, where the remaining 42.8% is explained by other factors that are not explained in the model.
open unemployment rate, weighted least square, fixed gaussian kernel, geographically weighted regression, Probabilities. Mathematical statistics, QA273-280
open unemployment rate, weighted least square, fixed gaussian kernel, geographically weighted regression, Probabilities. Mathematical statistics, QA273-280
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
