
Abstract This paper proposes a discrete-time, distributed algorithm for multi-agent networks to achieve the minimum l1-norm solution to a group of linear equations known to possess a family of solutions. We assume each agent in the network knows only one equation and can communicate with only its neighbors. The algorithm is developed based on a combination of the projection-consensus idea and the sub-gradient descent method. Given the underlying network graph to be directed and strongly connected, we prove that the algorithm enables all agents to achieve a common minimum l1-norm solution. The major difficulty to be dealt with is the non-smooth nature of the norm and the lack of strict convexity of the associated relevant performance index.
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 1 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
