Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Clinical & Translati...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Clinical & Translational Oncology
Article . 2024 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Open Access LMU
Article . 2024
Data sources: Open Access LMU
versions View all 5 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Identification of a gene expression signature associated with brain metastasis in colorectal cancer

Authors: Marlies Michl; Francesco Taverna; Christine Woischke; Pan Li; Frederick Klauschen; Thomas Kirchner; Volker Heinemann; +7 Authors

Identification of a gene expression signature associated with brain metastasis in colorectal cancer

Abstract

Abstract Purpose Brain metastasis (BM) in colorectal cancer (CRC) is a rare event with poor prognosis. Apart from (K)RAS status and lung and bone metastasis no biomarkers exist to identify patients at risk. This study aimed to identify a gene expression signature associated with colorectal BM. Methods Three patient groups were formed: 1. CRC with brain metastasis (BRA), 2. exclusive liver metastasis (HEP) and, 3. non-metastatic disease (M0). RNA was extracted from primary tumors and mRNA expression was measured using a NanoString Panel (770 genes). Expression was confirmed by qPCR in a validation cohort. Statistical analyses including multivariate logistic regression followed by receiver operating characteristic (ROC) analysis were performed. Results EMILIN3, MTA1, SV2B, TMPRSS6, ACVR1C, NFAT5 and SMC3 were differentially expressed in BRA and HEP/M0 groups. In the validation cohort, differential NFAT5, ACVR1C and SMC3 expressions were confirmed. BRA patients showed highest NFAT5 levels compared to HEP/M0 groups (global p = 0.02). High ACVR1C expression was observed more frequently in the BRA group (42.9%) than in HEP (0%) and M0 (7.1%) groups (global p = 0.01). High SMC3 expressions were only detectable in the BRA group (global p = 0.003). Only patients with BM showed a combined high expression of NFAT5, ACVR1C or SMC3 as well as of all three genes. ROC analysis revealed a good prediction of brain metastasis by the three genes (area under the curve (AUC) = 0.78). Conclusions The NFAT5, ACVR1C and SMC3 gene expression signature is associated with colorectal BM. Future studies should further investigate the importance of this biomarker signature.

Keywords

Gene Expression Regulation, Neoplastic [MeSH] ; Aged [MeSH] ; Colorectal cancer ; Liver Neoplasms/metabolism [MeSH] ; Male [MeSH] ; Brain metastasis ; Gene expression signature ; Liver Neoplasms/genetics [MeSH] ; Research Article ; Female [MeSH] ; Brain Neoplasms/secondary [MeSH] ; Brain Neoplasms/genetics [MeSH] ; Adult [MeSH] ; Humans [MeSH] ; Middle Aged [MeSH] ; Metastatic organotropism ; Biomarkers, Tumor/metabolism [MeSH] ; Liver Neoplasms/secondary [MeSH] ; ROC Curve [MeSH] ; Colorectal Neoplasms/pathology [MeSH] ; Biomarkers, Tumor/genetics [MeSH] ; Prognosis [MeSH] ; Transcriptome [MeSH] ; Colorectal Neoplasms/genetics [MeSH] ; Gene Expression Profiling [MeSH], Male, Adult, Brain Neoplasms, Gene Expression Profiling, Liver Neoplasms, Middle Aged, Prognosis, Gene Expression Regulation, Neoplastic, ROC Curve, Biomarkers, Tumor, Humans, Female, Colorectal Neoplasms, Transcriptome, Research Article, Aged

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    4
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
4
Top 10%
Average
Average
Green
hybrid