
doi: 10.1115/1.4052651
Abstract This article puts forward a computationally efficient block matrix based precise integration algorithm for solving vibration response subjected to time-variable excitation and nonlinearity, especially for nonhomogeneous dynamic response solution with large-scale degrees-of-freedom. In detail, the nonlinear parts and time-varying inputs of a dynamic system are separated from the original dynamic equations and then simulated within a computing time-step by employing a piecewise interpolation function. A novel closed-form iteration formula is presented in conjunction with the block matrix strategy and modified increment-dimensional precise integration technique. Interestingly, the presented approach is essentially a high-accuracy and parallel algorithm, which exhibits a high prediction accuracy without the limitation of matrix inversion, higher-order derivative, periodicity requirement nor cycle oscillation and instability of high-order interpolation. The feasibility and advantage of the proposed method are verified with two numerical examples.
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
