Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ IEEE Accessarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
IEEE Access
Article . 2023 . Peer-reviewed
License: CC BY NC ND
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
IEEE Access
Article . 2023
Data sources: DOAJ
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

ReTrustFSM: Toward RTL Hardware Obfuscation-A Hybrid FSM Approach

Authors: M. Sazadur Rahman; Rui Guo; Hadi M. Kamali; Fahim Rahman; Farimah Farahmandi; Mark Tehranipoor;

ReTrustFSM: Toward RTL Hardware Obfuscation-A Hybrid FSM Approach

Abstract

Hardware obfuscating is a proactive design-for-trust technique against IC supply chain threats, i.e., IP piracy and overproduction. Many studies have evaluated numerous techniques for obfuscation purposes. Nevertheless, de-obfuscation attacks have demonstrated their insufficiency. This paper proposes a register-transfer (RT) level finite-state-machine (FSM) obfuscation technique called ReTrustFSM that allows designers to obfuscate at the earliest possible stage. ReTrustFSM combines three types of secrecy: explicit external secrecy via an external key, implicit external secrecy based on specific clock cycles, and internal secrecy through a concealed FSM transition function. So, the robustness of ReTrustFSM relies on the external key, the external primary input patterns, and the cycle accuracy of applying such external stimuli. Additionally, ReTrustFSM defines a cohesive relationship between the features of Boolean problems and the required time for de-obfuscation, ensuring a maximum execution time for oracle-guided de-obfuscation attacks. Various attacks are employed to test ReTrustFSM’s robustness, including structural and machine learning attacks, functional I/O queries (BMC), and FSM attacks. We have also analyzed the corruptibility and overhead of design-under-obfuscation. Our experimental results demonstrate the robustness of ReTrustFSM at acceptable overhead/corruption while resisting such threat models.

Related Organizations
Keywords

logic locking, FSM, RTL, structural analysis, Electrical engineering. Electronics. Nuclear engineering, BMC, Hardware obfuscation, TK1-9971

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    13
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
13
Top 10%
Average
Top 10%
gold