
In the present scenario, retail sales forecasting has a great significance in E-commerce companies. The precise retail sales forecasting enhances the business decision making, storage management, and product sales. Inaccurate retail sales forecasting can decrease customer satisfaction, inventory shortages, product backlog, and unsatisfied customer demands. In order to obtain a better retail sales forecasting, deep learning models are preferred. In this manuscript, an effective Bi-GRU is proposed for accurate sales forecasting related to E-commerce companies. Initially, retail sales data are acquired from two benchmark online datasets: Rossmann dataset and Walmart dataset. From the acquired datasets, the unreliable samples are eliminated by interpolating missing data, outlier’s removal, normalization, and de-normalization. Then, feature engineering is carried out by implementing the Adaptive Particle Swarm Optimization (APSO) algorithm, Recursive Feature Elimination (RFE) technique, and Minimum Redundancy Maximum Relevance (MRMR) technique. Followed by that, the optimized active features from feature engineering are given to the Bi-Directional Gated Recurrent Unit (Bi-GRU) model for precise retail sales forecasting. From the result analysis, it is seen that the proposed Bi-GRU model achieves higher results in terms of an R2 value of 0.98 and 0.99, a Mean Absolute Error (MAE) of 0.05 and 0.07, and a Mean Square Error (MSE) of 0.04 and 0.03 on the Rossmann and Walmart datasets. The proposed method supports the retail sales forecasting by achieving superior results over the conventional models.
TK7885-7895, Computer engineering. Computer hardware, retail sales forecasting, Electronic computers. Computer science, Recursive Feature Elimination, Particle Swarm Optimization Algorithm, QA75.5-76.95, Minimum Redundancy Maximum Relevance, Bi-Directional Gated Recurrent Unit
TK7885-7895, Computer engineering. Computer hardware, retail sales forecasting, Electronic computers. Computer science, Recursive Feature Elimination, Particle Swarm Optimization Algorithm, QA75.5-76.95, Minimum Redundancy Maximum Relevance, Bi-Directional Gated Recurrent Unit
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 2 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
