Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Archivio Istituziona...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Magnetic Resonance in Medicine
Article . 2024 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
PubMed Central
Other literature type . 2024
License: CC BY
Data sources: PubMed Central
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

MRI detection of free‐contrast agent nanoparticles

Authors: Francesca Garello; Eleonora Cavallari; Martina Capozza; Marta Ribodino; Roberta Parolisi; Annalisa Buffo; Enzo Terreno;

MRI detection of free‐contrast agent nanoparticles

Abstract

AbstractPurposeThe integration of nanotechnology into biomedical imaging has significantly advanced diagnostic and theranostic capabilities. However, nanoparticle detection in imaging relies on functionalization with appropriate probes. In this work, a new approach to visualize free‐label nanoparticles using MRI and MRS techniques is described, consisting of detecting by 1H CSI specific proton signals belonging to the components naturally present in most of the nanosystems used in preclinical and clinical research.MethodsThree different nanosystems, namely lipid‐based micelles, liposomes, and perfluorocarbon‐based nanoemulsions, were synthesized, characterized by high resolution NMR and then visualized by 1H CSI at 300 MHz. Subsequently the best 1H CSI performing system was administered to murine models of cancer to evaluate the possibility of tracking the nanosystem by looking at its proton associated signal. Furthermore, an in vitro comparison between 1H CSI and 19F MRI was carried out.ResultsThe study successfully demonstrates the feasibility of detecting nanoparticles using MRI/MRS without probe functionalization, employing 1H CSI. Among the nanosystems tested, the perfluorocarbon‐based nanoemulsion exhibited the highest SNR. Consequently, it was evaluated in vivo, where its detection was achievable within tumors and inflamed regions via 1H CSI, and in lymph nodes via PRESS.ConclusionsThese findings present a promising avenue for nanoparticle imaging in biomedical applications, offering potential enhancements to diagnostic and theranostic procedures. This non‐invasive approach has the capacity to advance imaging techniques and expand the scope of nanoparticle‐based biomedical research. Further exploration is necessary to fully explore the implications and applications of this method.

Related Organizations
Keywords

Mice, Fluorocarbons, Preclinical and Clinical Imaging, Cell Line, Tumor, Liposomes, CSI, MRI, nanoparticles, liposomes, micelles, nanoemulsions, Animals, Contrast Media, Nanoparticles, Female, Magnetic Resonance Imaging, Micelles

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    1
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
1
Average
Average
Average
Green
hybrid
Related to Research communities
Cancer Research