
A variety of clustering algorithms have been applied to determine the internal structure of Radial Basis Function Neural Networks (RBFNNs). k-means algorithm is one of the most common choice for this task, although, like many other clustering algorithms, it needs to receive the number of prototypes a priori. This is a nontrivial procedure, mainly for real-world applications. An alternative is to use algorithms that automatically determine the number of prototypes. In this paper, we performed a multiobjective analysis involving three of these algorithms, which are: Adaptive Radius Immune Algorithm (ARIA), Affinity Propagation (AP), and Growing Neural Gas (GNG). For each one, the parameters that most influence the resulting number of prototypes composed the decision space, while the RBFNN RMSE and the number of prototypes formed the objective space. The experiments found that ARIA solutions achieved the best results for the multiobjective metrics adopted in this paper.
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 1 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
