Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Virologyarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Virology
Article . 2025 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Apollo
Article . 2025
License: CC BY
Data sources: Datacite
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
PubMed Central
Other literature type . 2025
License: CC BY
Data sources: PubMed Central
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Apollo
Article . 2025
License: CC BY
Data sources: Apollo
versions View all 5 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

An intra-family conserved high-order RNA structure within the M ORF is important for arterivirus subgenomic RNA accumulation and infectious virus production

Authors: Shang, Pengcheng; Li, Yanhua; Napthine, Sawsan; Chen, Chi; Brierley, Ian; Firth, Andrew E; Fang, Ying;

An intra-family conserved high-order RNA structure within the M ORF is important for arterivirus subgenomic RNA accumulation and infectious virus production

Abstract

ABSTRACT Synthesis of subgenomic RNAs is a strategy commonly used by polycistronic positive-sense single-stranded RNA viruses to express 3′-proximal genes. Members of the order Nidovirales , including coronaviruses and arteriviruses, use a unique discontinuous transcription strategy to synthesize subgenomic RNAs. In this study, in silico synonymous site conservation analysis and RNA structure folding predicted the existence of intra-family conserved high-order RNA structure within the M ORF of arteriviral genomes, which was further confirmed by RNA secondary structure probing. This RNA structure was determined to be important for the transcription/accumulation of subgenomic RNAs and the production of infectious viral particles. Mutations disrupting the stability of the RNA structures significantly decreased the accumulation of multiple subgenomic RNAs. In contrast, the impact of mutagenesis on full-length genomic RNA accumulation was limited. The degree to which wild-type levels of subgenomic RNA accumulation were maintained was found to correlate with the efficiency of infectious virus production. Moreover, the thermo-stability of stems within the high-order RNA structure is also well correlated with viral replication capacity and the maintenance of subgenomic RNA accumulation. This study is the first to report an intra- Arteriviridae conserved high-order RNA structure that is located in a protein-coding region and functions as an important cis -acting element to control the accumulation/transcription of arteriviral subgenomic RNAs. This work suggests a complex regulation mechanism between genome replication and discontinuous transcription in nidoviruses. IMPORTANCE Arteriviruses are a group of RNA viruses that infect different animal species. They can cause diseases associated with respiratory/reproductive syndromes, abortion, or hemorrhagic fever. Among arteriviruses, porcine reproductive and respiratory syndrome virus (PRRSV) and equine arteritis virus (EAV) are economically important veterinary pathogens. The challenge in control of arterivirus infection reflects our limited knowledge of viral biology. In this study, we conducted a comprehensive analysis of arteriviral genomes and discovered intra-family conserved regions in the M ORF with a high-order RNA structure. The thermo-stability of the RNA structure influences sgRNA transcription/accumulation and correlates with the level of infectious virus production. Our studies provide new insight into arterivirus replication mechanisms, which may have implications for developing disease control and prevention strategies.

Country
United Kingdom
Keywords

subgenomic RNA, Arterivirus, synonymous site conservation, Genome, Viral, Subgenomic RNA, Virus Replication, Genome Replication and Regulation of Viral Gene Expression, discontinuous transcription, nidovirus, Open Reading Frames, arterivirus, RNA, Viral, Nucleic Acid Conformation, Animals, RNA structure, Conserved Sequence

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Green
gold