
In this paper, we introduce a new semi-analytical method called the homotopy analysis Shehu transform method (HASTM) for solving multidimensional fractional diffusion equations. The proposed technique is a combination of the homotopy analysis method and the Laplace-type integral transform called the Shehu transform which is a generalization of the Laplace and the Sumudu integral transforms. Shehu transform is user-friendly, and its visualization is easier than the Sumudu, and the natural transforms. The convergence analysis of the method is proved, and we provide some applications of the fractional diffusion equations to validate the efficiency and the high accuracy of the technique. The results obtained using the HASTM are in complete agreement with the results of the existing techniques.
symbolic-numeric computation, shehu transform method, Science, Q, homotopy analysis shehu transform method, fractional diffusion equations
symbolic-numeric computation, shehu transform method, Science, Q, homotopy analysis shehu transform method, fractional diffusion equations
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 20 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
