
This paper provides a novel approach to estimating CO₂ emissions with high precision using machine learning based on DPRNNs with NiOA. The data preparation used in the present methodology involves sophisticated stages such as Principal Component Analysis (PCA) as well as Blind Source Separation (BSS) to reduce noise as well as to improve feature selection. This purified input dataset is used in the DPRNNs model, where both short and long-term temporal dependencies in the data are captured well. NiOA is utilized to tune those parameters; as a result, the prediction accuracy is quite spectacular. Experimental results also demonstrate that the proposed NiOA-DPRNNs framework gets the highest value of R(2) (0.9736), lowest error rates and fitness values than other existing models and optimization methods. From the Wilcoxon and ANOVA analyses, one can approve the specificity and consistency of the findings. Liebert and Ruple firmly rethink this rather simple output as a robust theoretic and empirical framework for evaluating and projecting CO(2) emissions; they also view it as a helpful guide for policymakers fighting global warming. Further study can build up this theory to include other greenhouse gases and create methods enabling instantaneous tracking for sophisticated and responsive approaches.
Ninja optimizer, Dual-path recurrent neural networks, Environmental forecasting, Science, Machine learning, Q, R, Medicine, Metaheuristics, CO2 emissions, Article
Ninja optimizer, Dual-path recurrent neural networks, Environmental forecasting, Science, Machine learning, Q, R, Medicine, Metaheuristics, CO2 emissions, Article
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 15 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
