
pmid: 40278847
User facility upgrades, new measurement techniques, advances in data analysis algorithms as well as advances in detector capabilities result in an increasing amount of data collected at X-ray beamlines. Some of these data must be analyzed and reconstructed on demand to help execute experiments dynamically and modify them in real time. In turn, this requires a computing framework for real-time processing capable of moving data quickly from the detector to local or remote computing resources, processing data, and returning results to users. In this paper, we discuss the streaming framework built on top of PvaPy, a Python API for the EPICS pvAccess protocol. We describe the framework architecture and capabilities, and discuss scientific use cases and applications that benefit from streaming workflows implemented on top of this framework. We also illustrate the framework's performance in terms of achievable data-processing rates for various detector image sizes.
real-time data processing, computing frameworks, Crystallography, pvapy, QD901-999, Nuclear and particle physics. Atomic energy. Radioactivity, python applications, data streaming, QC770-798, epics pvaccess, Computer Programs
real-time data processing, computing frameworks, Crystallography, pvapy, QD901-999, Nuclear and particle physics. Atomic energy. Radioactivity, python applications, data streaming, QC770-798, epics pvaccess, Computer Programs
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
