
arXiv: 2411.08077
When simulating metabolite productions with genome-scale constraint-based metabolic models, gene deletion strategies are necessary to achieve growth-coupled production, which means cell growth and target metabolite production occur simultaneously. Since obtaining gene deletion strategies for large genome-scale models suffers from significant computational time, it is necessary to develop methods to mitigate this computational burden. In this study, we introduce a novel framework for computing gene deletion strategies. The proposed framework first mines related databases to extract prior information about gene deletions for growth-coupled production. It then integrates the extracted information with downstream algorithms to narrow down the algorithmic search space, resulting in highly efficient calculations on genome-scale models. Computational experiment results demonstrated that our framework can compute stoichiometrically feasible gene deletion strategies for numerous target metabolites, showcasing a noteworthy improvement in computational efficiency. Specifically, our framework achieves an average 6.1-fold acceleration in computational speed compared to existing methods while maintaining a respectable success rate. The source code of DBgDel with examples are available on https://github.com/MetNetComp/DBgDel.
FOS: Computer and information sciences, Databases, FOS: Biological sciences, Databases (cs.DB), Quantitative Methods, Quantitative Methods (q-bio.QM)
FOS: Computer and information sciences, Databases, FOS: Biological sciences, Databases (cs.DB), Quantitative Methods, Quantitative Methods (q-bio.QM)
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 1 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
