
The 3D Just Noticeable Distortion (JND) threshold in essence depends on Human Visual Sensitivity (HVS). This paper carves out a Hybrid Just Noticeable Distortion (HJND) model to measure JND threshold in the framework of Depth Image-Based Rendering (DIBR) for 3D video. The critical differences between 2D and 3D visual perception, depth saliency and geometric distortion, are combined into the HJND model because their significant influence on HVS. To save bit, the HJND model is introduced into the Multi-view Video plus Depth (MVD) encoding framework as a residual filter. After the residue is filtered by HJND and the reference model named Joint Just Noticeable Distortion (JJND), bit saving is achieved up to 28.79% and 23.53%, respectively, and the 3D impaired videos filtered by HJND and JJND have the similar subjective quality. The experiments demonstrate that HJND describes HVS for 3D video more accurately than the state-of-the-art methods.
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 3 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
