
arXiv: 2503.09715
Understanding how to control changes in electronic structure and related dynamical renormalizations by external driving fields is the key for understanding ultrafast spectroscopy and applications in electronics. Here we focus on the band-gap's modulation by external electric fields and uncover the effect of band dispersion on the gap renormalization. We employ the Green's function formalism using the real-time Dyson expansion to account for dynamical correlations induced by photodoping. The many-body formalism captures the dynamics of systems with long-range interactions, carrier mobility, and variable electron and hole effective mass. We also demonstrate that mean-field simulations based on the Hartree-Fock Hamiltonian, which lacks dynamical correlations, yields a qualitatively incorrect picture of band-gap renormalization. We find the trend that increasing effective mass, thus decreasing mobility, leads to as much as a 6\% enhancement in band-gap renormalization. Further, the renormalization is strongly dependent on the degree of photodoping. As the screening induced by free electrons and holes effectively reduces any long-range and interband interactions for highly excited systems, we show that there is a specific turnover point with minimal band-gap. We further demonstrate that the optical gap renormalization follows the same trend though its magnitude is altered by the Moss-Burstein effect.
11 pages, 3 figures, supplemental information with additional calculation details, results and discussion
Condensed Matter - Materials Science, Materials Science (cond-mat.mtrl-sci), FOS: Physical sciences, Computational Physics (physics.comp-ph), Physics - Computational Physics
Condensed Matter - Materials Science, Materials Science (cond-mat.mtrl-sci), FOS: Physical sciences, Computational Physics (physics.comp-ph), Physics - Computational Physics
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 1 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
