
doi: 10.1049/itr2.12187
Abstract With the popularity of various portable mobile devices with positioning functions, a large amount of spatial‐temporal trajectory data has emerged. To effectively compress large‐scale vehicle trajectory data and serve intelligent transportation system, we propose a spatial‐temporal trajectory data compression algorithm based on vehicle motion pattern recognition. The algorithm recognizes vehicles' turning behaviour and variable speed behaviour during the driving process through the analysis of vehicle motion patterns, and extracts the trajectory's turning feature points and variable speed feature points, so as to achieve online compression of the vehicle trajectory. By means of large‐scale experimental datasets, the authors compare this algorithm with representative trajectory compression algorithms in various performance metrics. The experimental results indicate that as an online vehicle trajectory compression algorithm, the proposed algorithm is superior to representative compression algorithms in compression accuracy and computational efficiency, and the compression results can reflect semantic motion information such as turning patterns and variable speed patterns in the trajectory. Therefore, this algorithm has comprehensive advantages, which is foundational for trajectory data mining in intelligent transportation systems.
Transportation engineering, TA1001-1280, Electronic computers. Computer science, QA75.5-76.95
Transportation engineering, TA1001-1280, Electronic computers. Computer science, QA75.5-76.95
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 10 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
