Downloads provided by UsageCounts
handle: 20.500.12412/5447 , 2117/386407 , 10261/197393 , 11441/138157 , 10216/123524
Model developments to assess different air pollution exposures within cities are still a key challenge in environmental epidemiology. Background air pollution is a long-term resident and low-level concentration pollution difficult to quantify, and to which population is chronically exposed. In this study, hourly time series of four key air pollutants were analysed using Hidden Markov Models to estimate the exposure to background pollution in Madrid, from 2001 to 2017. Using these estimates, its spatial distribution was later analysed after combining the interpolation results of ordinary kriging and inverse distance weighting. The ratio of ambient to background pollution differs according to the pollutant studied but is estimated to be on average about six to one. This methodology is proposed not only to describe the temporal and spatial variability of this complex exposure, but also to be used as input in new modelling approaches of air pollution in urban areas.
Biomathematics, Àrees temàtiques de la UPC::Matemàtiques i estadística::Estadística matemàtica::Anàlisi multivariant, ModelsInverse distance weighting, Biomatemàtica, Classificació AMS::62 Statistics::62H Multivariate analysis, Classificació AMS::92 Biology and other natural sciences::92B Mathematical biology in general, Computer science--Mathematics, Classificació AMS::68 Computer science::68R Discrete mathematics in relation to computer science, Ordinary kriging, Multivariate analysis, Hidden Markov, Àrees temàtiques de la UPC::Matemàtiques i estadística::Matemàtica aplicada a les ciències, Informàtica--Matemàtica, Anàlisi multivariable, Air pollution exposure, Inverse distance weighting, Background pollution levels, Hidden Markov Models
Biomathematics, Àrees temàtiques de la UPC::Matemàtiques i estadística::Estadística matemàtica::Anàlisi multivariant, ModelsInverse distance weighting, Biomatemàtica, Classificació AMS::62 Statistics::62H Multivariate analysis, Classificació AMS::92 Biology and other natural sciences::92B Mathematical biology in general, Computer science--Mathematics, Classificació AMS::68 Computer science::68R Discrete mathematics in relation to computer science, Ordinary kriging, Multivariate analysis, Hidden Markov, Àrees temàtiques de la UPC::Matemàtiques i estadística::Matemàtica aplicada a les ciències, Informàtica--Matemàtica, Anàlisi multivariable, Air pollution exposure, Inverse distance weighting, Background pollution levels, Hidden Markov Models
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 41 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
| views | 103 | |
| downloads | 57 |

Views provided by UsageCounts
Downloads provided by UsageCounts