Downloads provided by UsageCounts
handle: 2117/393669
Knowledge of the Laplacian eigenvalues of a network provides important insights into its structural features and dynamical behaviours. Node or link removal caused by possible outage events, such as mechanical and electrical failures or malicious attacks, significantly impacts the Laplacian spectra. This can also happen due to intentional node removal against which, increasing the algebraic connectivity is desired. In this article, an analytical metric is proposed to measure the effect of node removal on the Laplacian eigenvalues of the network. The metric is formulated based on the local multiplicity of each eigenvalue at each node, so that the effect of node removal on any particular eigenvalues can be approximated using only one single eigen-decomposition of the Laplacian matrix. The metric is applicable to undirected networks as well as strongly-connected directed ones. It also provides a reliable approximation for the “Laplacian energy” of a network. The performance of the metric is evaluated for several synthetic networks and also the American Western States power grid. Results show that this metric has a nearly perfect precision in correctly predicting the most central nodes, and significantly outperforms other comparable heuristic methods.
This research was partly supported by the Erasmus+ KA107 grant. AMA, MJ, LS and XY were supported by the Australian Research Council through project No. DP170102303. MJ and XY are also supported by the Australian Research Council through project No. DP200101199. MAF was supported by AGAUR from the Catalan Government under project 2017SGR1087, and by MICINN from the Spanish Government with the European Regional Development Fund under project PGC2018-095471-B-I00
© 2023 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes,creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.
Peer Reviewed
Graph theory, Local multiplicity, Grafs, Teoria de, Laplacian spectrum, Grafs, Teoria de, Classificació AMS::05 Combinatorics::05C Graph theory, Complex network, Node-removal attack, Àrees temàtiques de la UPC::Matemàtiques i estadística::Matemàtica discreta::Teoria de grafs
Graph theory, Local multiplicity, Grafs, Teoria de, Laplacian spectrum, Grafs, Teoria de, Classificació AMS::05 Combinatorics::05C Graph theory, Complex network, Node-removal attack, Àrees temàtiques de la UPC::Matemàtiques i estadística::Matemàtica discreta::Teoria de grafs
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 4 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
| views | 72 | |
| downloads | 172 |

Views provided by UsageCounts
Downloads provided by UsageCounts