Powered by OpenAIRE graph
Found an issue? Give us feedback
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Automatic Object-Based Video Segmentation Using Distributed Genetic Algorithms

Authors: Eun Yi Kim; Se Hyun Park;

Automatic Object-Based Video Segmentation Using Distributed Genetic Algorithms

Abstract

This paper presents a segmentation method that can automatically segment a scene into its constitute objects. The proposed method is consists of four major modules: spatial segmentation, temporal segmentation, object extraction and tracking. For the spatial segmentation, a video sequence is modeled using Markov random fields (MRFs), and the energy function of each MRF is minimized by chromosomes that evolve using distributed genetic algorithms (DGAs). Then, to improve the performance, chromosomes of the subsequent frame are started with the segmentation result of the previous frame, thereafter only unstable chromosomes corresponding to the actually moving objects parts are evolved by mating. The change detection masks are produces by the temporal segmentation, and video objects are extracted by combining two segmentation results. Finally, the extracted objects are tracked using the proposed tracking algorithm. Here, the proposed object tracking method need not to compute the motion field or motion parameters. It can deal with scenes including multiple objects, plus keep track of objects even when they stop moving for an arbitrarily long time. The results tested with several real video sequences show the effectiveness of the proposed method.

Related Organizations
  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!