
This paper presents a segmentation method that can automatically segment a scene into its constitute objects. The proposed method is consists of four major modules: spatial segmentation, temporal segmentation, object extraction and tracking. For the spatial segmentation, a video sequence is modeled using Markov random fields (MRFs), and the energy function of each MRF is minimized by chromosomes that evolve using distributed genetic algorithms (DGAs). Then, to improve the performance, chromosomes of the subsequent frame are started with the segmentation result of the previous frame, thereafter only unstable chromosomes corresponding to the actually moving objects parts are evolved by mating. The change detection masks are produces by the temporal segmentation, and video objects are extracted by combining two segmentation results. Finally, the extracted objects are tracked using the proposed tracking algorithm. Here, the proposed object tracking method need not to compute the motion field or motion parameters. It can deal with scenes including multiple objects, plus keep track of objects even when they stop moving for an arbitrarily long time. The results tested with several real video sequences show the effectiveness of the proposed method.
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
