
handle: 11693/111943
The introduction of robotics and machine learning to architectural construction is leading to more efficient construction practices. So far, robotic construction has largely been implemented on standardized materials, conducting simple, predictable, and repetitive tasks. We present a novel mobile robotic system and corresponding learning approach that takes a step towards assembly of natural materials with anisotropic mechanical properties for more sustainable architectural construction. Through experiments both in simulation and in the real world, we demonstrate a dynamically adjusted curriculum and randomization approach for the problem of learning manipulation tasks involving materials with biological variability, namely bamboo. Using our approach, robots are able to transport bamboo bundles and reach to goal-positions during the assembly of bamboo structures.
690, 629, Robotics and automation in construction, AI-enabled robotics, Hardware-software, Integration in robotics
690, 629, Robotics and automation in construction, AI-enabled robotics, Hardware-software, Integration in robotics
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 6 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
