Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ IEEE Accessarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
IEEE Access
Article . 2023 . Peer-reviewed
License: CC BY NC ND
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
IEEE Access
Article . 2023
Data sources: DOAJ
DBLP
Article
Data sources: DBLP
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Classifying and Benchmarking Quantum Annealing Algorithms Based on Quadratic Unconstrained Binary Optimization for Solving NP-Hard Problems

Authors: Jehn-Ruey Jiang; Chun-Wei Chu;

Classifying and Benchmarking Quantum Annealing Algorithms Based on Quadratic Unconstrained Binary Optimization for Solving NP-Hard Problems

Abstract

Quantum annealing has the potential to outperform classical transistor-based computer technologies in tackling intricate combinatorial optimization problems. However, ongoing scientific debates cast doubts on whether quantum annealing devices (or quantum annealers) can genuinely provide better problem-solving capabilities than classical computers. The question of whether quantum annealing algorithms (QAAs) running on quantum annealers have computational advantages over classical algorithms (CAs) running on classical computers still remains unclear. This paper aims to clarify the question by classifying and benchmarking QAAs that utilize quadratic unconstrained binary optimization (QUBO) formulas to solve NP-hard problems. It proposes a four-class classification of QUBO formulas and exemplifies each class by QUBO formulas used by QAAs for solving specific NP-hard problems, such as the subset sum, maximum cut, vertex cover, 0/1 knapsack, graph coloring, Hamiltonian cycle, traveling salesperson, and job shop scheduling problems. The classification is based on the following two criteria: (i) Does the number of QUBO variables scale linearly with the problem input size? (ii) Does the QUBO formula have both the constraint term and the optimization term? QAAs are implemented and run on a D-Wave quantum annealer for benchmarking. They are benchmarked against related CAs in terms of the quality of the solution and the time to the solution. The benchmarking results reveal which classes of QUBO formulas are likely to provide advantages to QAAs over CAs. Furthermore, based on the benchmarking results, observations and suggestions are given for each class of QUBO formulas, facilitating the adoption of appropriate actions to improve the performance of QAAs.

Related Organizations
Keywords

quantum computer, quantum annealing, Noisy intermediate-scale quantum, NP-hard problem, Electrical engineering. Electronics. Nuclear engineering, quadratic unconstrained binary optimization, TK1-9971

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    10
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
10
Top 10%
Average
Top 10%
gold