Powered by OpenAIRE graph
Found an issue? Give us feedback
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Implementation of Multiobjective Memetic Algorithms for Combinatorial Optimization Problems: A Knapsack Problem Case Study

Authors: Hisao Ishibuchi; Yasuhiro Hitotsuyanagi; Noritaka Tsukamoto; Yusuke Nojima;

Implementation of Multiobjective Memetic Algorithms for Combinatorial Optimization Problems: A Knapsack Problem Case Study

Abstract

In this chapter, we discuss various issues related to the implementation of multiobjective memetic algorithms (MOMAs) for combinatorial optimization problems. First we explain an outline of our MOMA, which is a hybrid algorithm of NSGA-II and local search. Our MOMA is a general framework where we can implement a number of variants. For example, we can use Pareto dominance as well as scalarizing functions such as a weighted sum in local search. Through computational experiments on multiobjective knapsack problems, we examine various issues in the implementation of our MOMA. More specifically, we examine the following issues: the frequency of local search, the choice of initial solutions for local search, the specification of an acceptance rule of local moves, the specification of a termination condition of local search, and the handling of infeasible solutions. We also examine the dynamic control of the balance between genetic operations (i.e., global search) and local search during the execution of our MOMA. Experimental results show that the hybridization with local search does not necessarily improve the performance of NSGA-II whereas local search with problem-specific knowledge leads to drastic performance improvement. Experimental results also show the importance of the balance between global search and local search. Finally we suggest some future research issues in the implementation of MOMAs.

Related Organizations
  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    13
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
13
Average
Top 10%
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!